On providing prior knowledge for learning relational search heuristics
نویسندگان
چکیده
In this paper, we propose the use of two relational learning systems, hamlet and evock, for acquiring useful search control heuristics in the context of automated task planning. In particular, we discuss the influence of different ways of providing prior background knowledge to such systems. We compare the results of providing initial information by means of a human-centered approach against two automated approaches. The first automated one consists of using the output of hamlet as input to the learning process of evock, and viceversa. The second automated approach consists of using another planner for providing guidance towards solutions of problems.
منابع مشابه
An integrated approach for scheduling flexible job-shop using teaching–learning-based optimization method
In this paper, teaching–learning-based optimization (TLBO) is proposed to solve flexible job shop scheduling problem (FJSP) based on the integrated approach with an objective to minimize makespan. An FJSP is an extension of basic job-shop scheduling problem. There are two sub problems in FJSP. They are routing problem and sequencing problem. If both the sub problems are solved simultaneously, t...
متن کاملIntegrating Ontological Prior Knowledge into Relational Learning
Ontologies represent an important source of prior information which lends itself to the integration into statistical modeling. This paper discusses approaches towards employing ontological knowledge for relational learning. Our analysis is based on the IHRM model that performs relational learning by including latent variables that can be interpreted as cluster variables of the entities in the d...
متن کاملMode Directed Path Finding
Learning from multi-relational domains has gained increasing attention over the past few years. Inductive logic programming (ILP) systems, which often rely on hill-climbing heuristics in learning first-order concepts, have been a dominating force in the area of multi-relational concept learning. However, hill-climbing heuristics are susceptible to local maxima and plateaus. In this paper, we sh...
متن کاملImproved teaching–learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems
Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having ‘g’ operations is performed on ‘g’ operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem...
متن کاملAggregation in Confidence-Based Concept Discovery for Multi-Relational Data Mining
Multi-relational data mining has become popular due to the limitations of propositional problem definition in structured domains and the tendency of storing data in relational databases. Several relational knowledge discovery systems have been developed employing various search strategies, heuristics, language pattern limitations and hypothesis evaluation criteria, in order to cope with intract...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003